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Abstract 

As a well-known alternative to the conforming linear triangular finite element for approximation of the first-order 
Sobolev space, the non-conforming linear element is considered a classical discontinuous Galerkin finite element 
and has various interesting and attractive properties from both theoretical and practical standpoints. In particular, its a 
priori error analysis was performed in fairly early stage of mathematical analysis of FEM, and recently a posteriori 
error analysis is rapidly developing as well.  For accurate error estimation of such an FEM, various error constants 
must be evaluated quantitatively. Based on our preceding works on the constant and conforming linear triangles, we 
here give some results for error constants required for analysis of the non-conforming linear triangle.  
More specifically, we first summarize a priori error estimation of the present non-conforming FEM, where several 
error constants appear. In this process, we use the lowest-order Raviart-Thomas triangular element to deal with the 
inter-element discontinuity of the approximate functions. Then we introduce some constants related to a reference 
triangle, some of which are popular in the constant and conforming linear cases. We give some theoretical results for 
the upper bounds of such constants. In some very special cases, exact values of constants can be obtained. In 
particular, a kind of maximum angle condition is required as in the case of the conforming linear triangle. Finally, we 
illustrate some numerical results to support the validity of such upper bounds. Our results can be effectively used in 
the quantitative a priori and a posteriori error estimates for the non-conforming linear triangular FEM.   
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Abstract The non-conforming linear(P1) triangular FEM can be viewed as a kind of the discontinuous
Galerkin method, and is attractive in both theoretical and practical senses. Since various error constants
must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their
theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle
condition is required just as in the case of the conformingP1 triangle. Some applications and numerical
results are also illustrated to see the validity and effectiveness of our analysis.
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INTRODUCTION

As a well-known alternative to the conforming linear(P1) triangular finite element for approximation of
the first-order Sobolev space(H1), the non-conformingP1 element is considered a classical discontinuous
Galerkin finite element [4] and has various interesting properties from both theoretical and practical stand-
points [10, 22]. In particular, its a priori error analysis was performed in fairly early stage of mathematical
analysis of FEM (Finite Element Method), and recently a posteriori error analysis is rapidly develop-
ing as well. For accurate error estimation of such an FEM, various error constants must be evaluated
quantitatively [2, 6, 8, 17, 20, 21].
Based on our preceding works on the constant(P0) and the conformingP1 triangles [14, 15], we here give
some results for error constants required for analysis of the non-conformingP1 triangle. More specifically,
we first summarize a priori error estimation of the present non-conforming FEM, where several error
constants appear. In this process, we use the lowest-order Raviart-Thomas triangularH(div) element to
deal with the inter-element discontinuity of the approximate functions [9, 16]. Then we introduce some
constants related to a reference triangle, some of which are popular in theP0 and the conformingP1

cases. We give some theoretical results for the upper bounds of such constants. Finally, we illustrate some
numerical results to support the validity of such upper bounds. Our results can be effectively used in the
quantitative a priori and a posteriori error estimates for the non-conformingP1 triangular FEM.

A PRIORI ERROR ESTIMATION

We here summarize a priori error estimation of the non-conformingP1 triangular FEM. LetΩ be a
bounded convex polygonal domain inR2 with boundary∂Ω, and let us consider a weak formulation
of the Dirichlet boundary value problem for the Poisson equation:Givenf ∈ L2(Ω), findu ∈ H1

0 (Ω) s. t.

(∇u,∇v) = (f, v) ; ∀ v ∈ H1
0 (Ω) . (1)

Here,L2(Ω) andH1
0 (Ω) are the usual Hilbertian Sobolev spaces associated toΩ, ∇ is the gradient oper-

ator, and(·, ·) stands for the inner products of bothL2(Ω) andL2(Ω)2. It is well known that the solution
exists uniquely inH1

0 (Ω) and also belongs toH2(Ω) for the consideredΩ.



Let us consider a regular family of triangulations{T h}h>0 of Ω, to which we associate the non-conforming
P1 finite element spaces{V h}h>0. EachV h is constructed over a certainT h, and the functions inV h are
linear in eachK ∈ T h with continuity only at midpoints of edges, and also vanish at the midpoints on∂Ω
to approximate the homogeneous Dirichlet condition [10, 22]. Then the finite element solutionuh ∈ V h

is determined by, for a givenf ∈ L2(Ω),

(∇huh,∇hvh) = (f, vh) ; ∀ vh ∈ V h , (2)

where∇h is the “non-conforming” or discrete gradient defined as theL2(Ω)2-valued operator by the
element-wise relations(∇hv)|K = ∇(v|K) for ∀v ∈ V h + H1(Ω) and∀K ∈ T h.
Eq. (2) is formally of the same form as in the conforming case, so that, for error analysis, it is natural to
consider an appropriate interpolation operatorΠh from H1

0 (Ω) (or its intersection with some other spaces)
to V h. However, the situation is not so simple. That is, using the Green formula, we have

(∇huh,∇hvh) = (∇u,∇hvh)−
∑

K∈T h

∫

∂K

vh
∂u

∂n

∣∣∣∣
∂K

dγ ; ∀ vh ∈ V h , (3)

where ∂u
∂n

∣∣
∂K

denotes the trace of the derivative ofu in the outward normal direction of∂K, anddγ
does the infinitesimal element of∂K. Conventional efforts of error analysis have been focused on the
estimation of the second term in the right-hand side of (3), which is absent in the conforming case. To
cope with such difficulty, we introduce the lowest-order Raviart-Thomas triangularH(div) finite element
spaceW h associated to eachT h [9, 16]. Then, noting that the normal component of∀qh ∈ W h is constant
and continuous along each inter-element edge, we can derive(qh,∇hvh) + (div qh, vh) = 0, and hence

(∇huh −∇u,∇hvh) = (qh −∇u,∇hvh) + (div qh + f, vh) ; ∀ qh ∈ W h, ∀vh ∈ V h . (4)

Then by Lemma 6 of [12], a refinement of Strang’s second lemma [10], we have

‖∇u−∇huh‖2 = inf
vh∈V h

‖∇u−∇hvh‖2 +

[
sup

wh∈V h\{0}

(qh −∇u,∇hwh) + (div qh + f, wh)

‖∇hwh‖
]2

, (5)

where‖ · ‖ stands for the norms of bothL2(Ω) andL2(Ω)2. Using the Fortin operatorΠF
h : H(div; Ω) ∩

H
1
2
+δ(Ω)2 → W h (δ > 0) (cf. [9]) and the orthogonal projection oneQh : L2(Ω) → Xh := space of step

functions overT h, we obtain a priori error estimate:

‖∇u−∇huh‖2 ≤ inf
vh∈V h

‖∇u−∇hvh‖2 +

[
‖∇u− ΠF

h∇u‖+ sup
wh∈V h\{0}

(f −Qhf, wh −Qhwh)

‖∇hwh‖
]2

, (6)

whereqh in (5) is taken asΠF
h∇u.

We can obtain a more concrete error estimate in terms of the mesh parameterh∗ > 0 (h will be used in a
different meaning later) by deriving estimates such as, for∀v ∈ H1

0 (Ω) ∩H2(Ω) and∀g ∈ H1(Ω) + V h,

‖v − Πhv‖ ≤ γ0h
2
∗|v|2 , ‖∇v −∇hΠhv‖ ≤ γ1h∗|v|2 ,

‖∇v − ΠF
h∇v‖ ≤ γ2h∗|v|2 , ‖g −Qhg‖ ≤ γ3h∗‖∇hg‖ , (7)

where| · |k denotes the standard seminorm ofHk(Ω) (k ∈ N) [10], andγ0, γ1, γ2 andγ3 are positive error
constants dependent only on{T h}h>0.
Then we obtain, for the solutionu ∈ H1

0 (Ω) ∩H2(Ω),

‖∇u−∇huh‖ ≤
{

h∗{γ2
1 |u|22 + (γ2|u|2 + γ3‖f‖)2}1/2 for f ∈ L2(Ω),

h∗{γ2
1 |u|22 + (γ2|u|2 + γ2

3h∗|f |1)2}1/2 for f ∈ H1(Ω),
(8)

where the term|u|2 can be bounded as|u|2 ≤ ‖f‖ for the presentΩ.
We can also use Nitsche’s trick to evaluate a prioriL2 error of uh [10, 17]. That is, let us defineψ ∈
H1

0 (Ω) (∩H2(Ω)) for eh := u− uh by

(∇ψ,∇v) = (eh, v) ; ∀v ∈ H1
0 (Ω) . (9)



Then, for∀vh ∈ V h and∀qh, q̃h ∈ W h, we have

‖eh‖2 =(q̃h−∇hvh,∇he
h) + (∇hvh −∇ψ,∇u− qh) + (ψ − vh, div qh+ f) + (div q̃h+ eh, eh) . (10)

Substitutingvh = Πhψ, qh = ΠF
h∇u andq̃h = ΠF

h∇ψ above, we find

‖eh‖2 = (ΠF
h∇ψ −∇ψ +∇ψ −∇hΠhψ,∇he

h) + (∇hΠhψ −∇ψ,∇u− ΠF
h∇u)

+ (ψ − Πhψ, f −Qhf) + (eh −Qhe
h, eh −Qhe

h) , (11)

sincediv qh = div ΠF
h∇u = −Qhf anddiv q̃h = div ΠF

h∇ψ = −Qhe
h. Then we have, by (7) as well as

the relations|u|2 ≤ ‖f‖ and|ψ|2 ≤ ‖eh‖,

‖eh‖2 ≤ [
(γ1 + γ2)h∗‖∇he

h‖+ (γ0 + γ1γ2)h
2
∗‖f‖

] ‖eh‖+ γ2
3h

2
∗‖∇he

h‖2 , (12)

where the termγ0h
2
∗‖f‖·‖eh‖ can be replaced withγ0γ3h

3
∗|f |1‖eh‖ if f ∈ H1(Ω). This may be considered

a quadratic inequality for‖eh‖, and solving it gives an expected order estimate‖u−uh‖ = ‖eh‖ = O(h2
∗):

‖eh‖≤ h∗
2

(
A1 +

√
A2

1 + 4A2

)
; A1 = (γ1 + γ2)‖∇he

h‖+ (γ0 + γ1γ2)h∗‖f‖, A2 = γ2
3‖∇he

h‖2. (13)

RELATION TO RAVIART-THOMAS MIXED FEM

We have already introduced the Raviart-Thomas spaceW h for auxiliary purposes. But it is well known
that the present non-conforming FEM is closely related to the Raviart-Thomas mixed FEM [3, 18]. Here
we will summarize the implementation of such a mixed FEM by slightly modifying the original non-
conformingP1 scheme described by (2). The original idea in [3, 18] is based on the enrichment by the
conforming cubic bubble functions with theL2 projection intoW h, but we here adopt non-conforming
quadratic bubble ones to make the modification procedure a little simpler.
Firstly, we replacef in (2) byQhf . Thenuh is modified tou∗h ∈ V h defined by

(∇hu
∗
h,∇hvh) = (Qhf, vh) ; ∀ vh ∈ V h . (14)

Secondly, we introduce the spaceV h
B of non-conforming quadratic bubble functions by defining its basis

functionϕK associated to eachK ∈ T h: ϕK vanishes outsideK and its value atx ∈ K is given by

ϕK(x) =
1

2
|x− xG|2 − 1

12

3∑
i=1

|x(i) − xG|2 , (15)

where| · | is the Euclidean norm ofR2, xG the barycenter ofK, andx(i) for i = 1, 2, 3 thei-th vertex of
K. It is easy to see that the line integration ofϕK for each edgee of K vanishes:

∫

e

ϕK dγ = 0 . (16)

Now the enriched non-conforming finite element spaceṼ h is defined by the following linear sum:

Ṽ h = V h + V h
B . (17)

By (16) and the Green formula, we find the following orthogonality relation for(∇h·,∇h·):

(∇hvh,∇hβh) = 0 ; ∀ vh ∈ V h , ∀ βh ∈ V h
B . (18)

Then the modified finite element solutionũh ∈ Ṽ h is defined by

(∇hũh,∇hṽh) = (Qhf, ṽh) ; ∀ ṽh ∈ Ṽ h . (19)



Thanks to (18), the presentũh can be obtained as the sum

ũh = u∗h + αh , (20)

whereu∗h ∈ V h is the solution of (14), andαh ∈ V h
B is determined by

(∇hαh,∇hβh) = (Qhf, βh) ; ∀βh ∈ V h
B , (21)

i. e., completely independently ofu∗h. Moreover,αh can be decided by element-by-element computations.
More specifically, denotingαh|K asαKϕK |K, Eq. (21) leads to

αK(∇ϕK ,∇ϕK)K = (Qhf, ϕK)K ; ∀K ∈ T h , (22)

where(·, ·)K denotes the inner products of bothL2(K) andL2(K)2.
Define{ph, uh} ∈ L2(Ω)2 ×Xh by

ph = ∇hũh , uh = Qhũh . (23)

By applying the Green formula to (19), we can show thatph ∈ W h, and also that the present pair{ph, uh}
satisfies the determination equations of the lowest-order Raviart-Thomas mixed FEM:

{
(ph, qh) + (uh, div qh) = 0 ; ∀ qh ∈ W h ,
(div ph, vh) = −(Qhf, vh) ; ∀ vh ∈ Xh .

(24)

By the uniqueness of the solutions,{ph, uh} is nothing but the unique solution of (24).
In conclusion, denoting the constant value ofQhf |K by fK

(
=

∫
K

f dx/meas(K)
)
, we have for∀K ∈

T h and∀x ∈ K that

αK = −1

2
fK , ũh(x) = u∗h(x) + αKϕK(x) = u∗h(x)− 1

4
fK

(|x− xG|2 − 1

6

3∑
i=1

|x(i) − xG|2) ,

ph(x) = ∇u∗h(x)− 1

2
fK(x− xG) , uh(x) = u∗h(x

G)− 1

16
fK

(|xG|2 − 1

3

3∑
i=1

|x(i)|2) , (25)

which coincide with those in [18] and are easy to compute by post-processing.

A POSTERIORI ERROR ESTIMATION

The consideration in the preceding section suggests the a posteriori error estimation based on the hyper-
circle method [11, 16].
Taking notice of the fact thatph ∈ W h obtained in the preceding section belongs toH(div; Ω) with
div ph = −Qhf , we find that, for∀v ∈ H1

0 (Ω),

‖∇v − ph‖2 = ‖∇(v − uh)‖2 + ‖∇uh − ph‖2 , ‖∇uh − 1

2
(∇v + ph)‖ =

1

2
‖∇v − ph‖ , (26)

whereuh ∈ H1
0 (Ω) is the solution of (1) withf replaced byQhf :

(∇uh,∇v) = (Qhf, v) ; ∀ v ∈ H1
0 (Ω) . (27)

Eq. (26) implies that the three points∇uh, ∇v andph in L2(Ω)2 make a hypercircle, the first having a
right inscribed angle. Noting that(f − Qhf, v) = (f − Qhf, v − Qhv) for ∀v ∈ H1

0 (Ω) ⊂ L2(Ω), we
have by (7) that

|u− uh|1 = ‖∇(u− uh)‖ ≤ γ3h∗‖f −Qhf‖
(≤ γ2

3h
2
∗|f |1 if f ∈ H1(Ω)

)
. (28)

Taking an appropriatev ∈ H1
0 (Ω), we obtain a posteriori error estimates related toph = ∇hũh:



‖∇u− ph‖ ≤ ‖∇v− ph‖+ ‖∇(u−uh)‖ , ‖∇u− 1

2
(∇v + ph)‖ ≤ 1

2
‖∇v− ph‖+ ‖∇(u−uh)‖ . (29)

A typical example ofv is the conformingP1 finite element solutionuC
h ∈ V h

C , whereV h
C is the conforming

P1 space overT h. Another example is a functionvC
h ∈ V h

C obtained by appropriate post-processing of
uh or u∗h, such as nodal averaging or smoothing. A cheap method of constructing a nicevC

h may be an
interesting subject. Again we need the constantγ3 to evaluate the term‖∇(u− uh)‖ above.
If we use∇huh based on the originaluh ∈ V h in (2), instead of̃uh ∈ Ṽh, we must evaluate some additional
terms. Fortunately, such evaluation can be done explicitly byγ3 and some constants related to{ϕK}K∈T h.
The error‖∇u−∇huh‖ thus evaluated can be also used to give a posterioriL2 estimate based on (13).

ERROR CONSTANTS

To analyze the error constants in (7), let us consider their elementwise counterparts. Leth, α andθ be
positive constants such that

h > 0 , 0 < α ≤ 1 , (
π

3
≤) cos−1 α

2
≤ θ < π . (30)

Then we define the triangleTα,θ,h by4OAB with three verticesO(0, 0), A(h, 0) andB(αh cos θ, αh sin θ).
From (30),AB is shown to be the edge of maximum length, i. e.AB ≥ h ≥ αh, so thath = OA
here denotes the medium edge length, unlike the usual usage as the largest one [10]. A point on the
closureTα,θ,h of Tα,θ,h is denoted byx = {x1, x2}, and the three edgesei’s (i=1,2,3) are defined by
{e1, e2, e3} = {OA,OB, AB}. By an appropriate congruent transformation inR2, we can configure any
triangle asTα,θ,h. As the usage in [5], we will use abbreviated notationsTα,θ = Tα,θ,1, Tα = Tα,π/2 and
T = T1 (Fig. 1). We will also use the notations‖ · ‖Tα,θ,h

and | · |k,Tα,θ,h
as the norm ofL2(Tα,θ,h) and

seminorms ofHk(Tα,θ,h) (k ∈ N), where the subscriptTα,θ,h will be usually omitted.

B(αh cos θ, αh sin θ)

A(h, 0)
O

θ

Tα,θ,h{αh {

h

B(α cos θ, α sin θ)

A(1, 0)
O

θ

Tα,θ = Tα,θ,1{α {

1

B(0, α)

A(1, 0)
O

Tα = Tα, π
2

B(0, 1)

A(1, 0)
O

T = T1

Figure 1: Notations for triangles :Tα,θ = Tα,θ,1, Tα = Tα,π/2, T = T1

Let us define the following closed linear spaces for functions overTα,θ,h :

V 0
α,θ,h = {v ∈ H1(Tα,θ,h) |

∫

Tα,θ,h

v(x) dx = 0}, (31)

V i
α,θ,h = {v∈H1(Tα,θ,h)|

∫

ei

v(s) ds = 0} (i = 1, 2, 3), (32)

V
{1,2}
α,θ,h = {v∈H1(Tα,θ,h)|

∫

e1

v(s) ds =

∫

e2

v(s) ds = 0}, (33)

V
{1,2,3}
α,θ,h = {v ∈ H1(Tα,θ,h)|

∫

ei

v(s) ds = 0 (i = 1,2,3)}, (34)

V 4
α,θ,h = {v ∈ H2(Tα,θ,h)|

∫

ei

v(s) ds = 0 (i = 1,2,3)}. (35)

For the above, we will again use abbreviated notations likeV 0
α,θ = V 0

α,θ,1, V 0
α = V 0

α,π/2, V 0 = V 0
1 etc.

Let us consider the (elementwise)P0 interpolation operatorΠ0
α,θ,h and non-conformingP1 oneΠ1,N

α,θ,h for
functions onTα,θ,h [8, 10] : Π0

α,θ,hv for ∀v ∈ H1(Tα,θ,h) is a constant function such that

(Π0
α,θ,hv)(x) =

∫

Tα,θ,h

v(y) dy

/∫

Tα,θ,h

dy (∀x ∈ Tα,θ,h), (36)



while Π1,N
α,θ,hv for ∀v ∈ H1(Tα,θ,h) is a linear function such that

∫

ei

(Π1,N
α,θ,hv)(s) ds =

∫

ei

v(s) ds for i = 1, 2, 3 . (37)

To analyze these interpolation operators, let us estimate the positive constants defined by

CJ(α, θ, h) = sup
v∈V J

α,θ,h\{0}

‖v‖
|v|1 (J = 0, 1, 2, 3, {1, 2}, {1, 2, 3}) , (38)

C4(α, θ, h) = sup
v∈V 4

α,θ,h\{0}

|v|1
|v|2 , C5(α, θ, h) = sup

v∈V 4
α,θ,h\{0}

‖v‖
|v|2 . (39)

We will again use abbreviated notationsCJ(α, θ) = CJ(α, θ, 1), CJ(α) = CJ(α, π/2), andCJ = CJ(1).
By a simple scale change, we find thatCJ(α, θ, h) = hCJ(α, θ) (J 6= 5) andC5(α, θ, h) = h2C5(α, θ).
Now, by notingv − Π0

α,θ,hv ∈ V 0
α,θ,h for v ∈ H1(Tα,θ,h) andv − Π1,N

α,θ,hv ∈ V 4
α,θ,h for v ∈ H2(Tα,θ,h), we

can easily have the popular type of interpolation error estimates onTα,θ,h [8, 10]:

‖v − Π0
α,θ,hv‖ ≤ C0(α, θ)h|v|1 ; ∀v ∈ H1(Tα,θ,h), (40)

|v − Π1,N
α,θ,hv|1 ≤ C4(α, θ)h|v|2 ; ∀v∈H2(Tα,θ,h), (41)

‖v − Π1,N
α,θ,hv‖ ≤ C5(α, θ)h2|v|2 ; ∀v∈H2(Tα,θ,h). (42)

We can show that the following relations hold for the above constants :

C4(α, θ) ≤ C0(α, θ) , C5(α, θ) ≤ C0(α, θ)C{1,2,3}(α, θ) ≤ C0(α, θ)C{1,2}(α, θ) . (43)

An estimation rougher than the latter of (43) isC5(α, θ) ≤ C0(α, θ) mini=1,2,3 Ci(α, θ). To show the
former of (43), we first derive

∫
Tα,θ

∂v/∂xi dx = 0 for ∀v ∈ V 4
α,θ (i = 1, 2) by using (35) and the Gauss

formula. Then we can easily obtain the desired result by noting the definition ofC0(α, θ). To derive the
latter of (43), we should evaluate‖v‖/|v|1 and|v|1/|v|2 for ∀v ∈ V 4

α,θ (i = 1, 2). The former quotient
can be evaluated by usingC{1,2,3}(α, θ), while the latter can be done byC4(α, θ) and the former of (43).
Clearly,C{1,2,3}(α, θ) ≤ C{1,2}(α, θ), and we have the latter of (43).
Thus we can give quantitative interpolation estimates from (40) through (42), if we succeed in evaluating
or bounding the constantsCJ(α, θ)’s explicitly for all possibleJ . Among them,C0(α, θ) andC{1,2}(α, θ)
are important as may be seen from (43). Notice that each of such constants can be characterized by
minimization of a kind of Rayleigh quotient [5, 20, 21]. Then it is equivalent to finding the minimum
eigenvalue of a certain eigenvalue problem expressed by a weak formulation for a partial differential
equation with some auxiliary conditions.
Moreover, we already derived some results forCi(α, θ) for i = 0, 1, 2 [14, 15]. In particular,C0 = 1/π,
andC1(= C2) is equal to the maximum positive solution of the equation1/µ + tan (1/µ) = 0 for µ.
The constantsCJ(α, θ)’s for J = 0, 1, 2, 3, 4, 5, {1, 2}, {1, 2, 3} are bounded uniformly for{α, θ}. More
specifically, their explicit upper bounds are given in terms ofα, θ and their values at{α, θ} = {1, π/2}.
Furthermore,CJ(α)’s except forJ = 4 are monotonically increasing inα. Asymptotic behaviors of the
constantsCJ(α)’s for α ↓ 0 can be also analyzed [15]. As a result, the interpolation by the non-conforming
P1 triangle is robust to the distortion ofTα,θ. This fact does not necessarily imply the robustness of the
final error estimates foru− uh, since analysis of the Fortin interpolation has not been performed yet.

Remark 1. Instead ofΠ1,N
α,θ,h, it is also possible to consider an interpolation operator using the function

values at midpoints of edges. Such an operator is definable for continuous functions overTα,θ,h, but not
so for functions inH1(Tα,θ,h). Moreover, its analysis would be different from that forΠ1,N

α,θ,h.



DETERMINATION OF C{1,2}
From the preceding observations, we can give explicit upper bounds of various interpolation constants as-
sociated to the non-conformingP1 triangle, provided that the value ofC{1,2} is determined. This becomes
indeed possible by adopting essentially the same idea and techniques to determineC0 andC1 (= C2):

Theorem 1. C{1,2} = C{1,2}(1, π/2, 1) is equal to the maximum positive solution of the transcendental
equation forµ :

1

2µ
+ tan

1

2µ
= 0 . (44)

The above implies thatC{1,2} = 1
2
C1(=

1
2
C2), and hence is bounded as, with numerical verification,

0.24641 < C{1,2} < 0.24647 . (45)

Remark 2. Thus 1/4 is a simple but nice upper bound. Numerically, we haveC{1,2} = 0.2464562258 · · · .
Proof. By the use of the techniques for determination ofC0 andC1 = C2 in [14, 15], we obtain the
following equation forµ :

1 +
1

2µ
sin

1

µ
− cos

1

µ
= 0,

whose maximum positive solution is the desiredC{1,2}. By the double-angle formulas, the above is
transformed into

(2 sin
1

2µ
+

1

µ
cos

1

2µ
) sin

1

2µ
= 0.

It is now easy to derive (44), and also to draw other conclusions by using the results in [14, 15].

ANALYSIS OF FORTIN’S INTERPOLATION

This section is devoted to analysis of the Fortin interpolation operatorΠF
α,θ for eachTα,θ [9]. First, let us

introduce the following transformation betweenx = {x1, x2} ∈ Tα,θ andx̂ = {x̂1, x̂2}:
x̂1 = x1 sin θ − x2 cos θ , x̂2 = x1 cos θ + x2 sin θ . (46)

For eachq = {q1, q2} ∈ H(div; Tα,θ), we also consider the (contravariant) expressionq̂ = {q̂1, q̂2}:
q̂1 = q1 sin θ − q2 cos θ , q̂2 = q1 cos θ + q2 sin θ , (47)

for which we loosely use bothx and x̂ as variables. The Raviart-Thomas type approximate function
qh = {qh1, qh2} are given, together with the expression forq̂h = {q̂h1, q̂h2}, by

{
qh1 = α1 + α3x1

qh2 = α2 + α3x2
,

{
q̂h1 = α1 sin θ − α2 cos θ + α3x̂1

q̂h2 = α1 cos θ + α2 sin θ + α3x̂2
. (48)

The Fortin interpolationq∗h = {q∗h1, q
∗
h2} = ΠF

α,θq for q ∈ H(div; Tα,θ) ∩ H
1
2
+δ(Tα,θ)

2 (δ > 0) is of the
form of qh in (48) and characterized by the conditions:

∫

e1

(q∗h2 − q2) ds =

∫

e2

(q̂∗h1 − q̂1) ds = 0 ,

∫

Tα,θ

div(q∗h − q) dx = 0 , (49)

whereq̂ for q andq̂∗h for q∗h are defined by the relations in (47) and (48), respectively.
Let us now introduce another interpolationΠ

{1,2}
α,θ q = q†h = {q†h1, q

†
h2} for the sameq, which is a constant

vector function that satisfies only the former two conditions of (49). Then we have theL2 estimate

‖q − ΠF
α,θq‖≤‖q − Π

{1,2}
α,θ q‖+

‖div q‖
2
√|Tα,θ|

√∫

Tα,θ

|x|2dx=‖Π{1,2}
α,θ q − q‖+

√
1+α cos θ+α2

24
‖div q‖. (50)

To bound‖q − Π
{1,2}
α,θ q‖, let us evaluate‖q̂1− q̂†h1‖ and‖q2− q†h2‖ by usingC1(α, θ) andC2(α, θ):



Theorem 2. It holds forq = {q1, q2} ∈ H1(Tα,θ)
2 that

‖q − Π
{1,2}
α,θ q‖ ≤ C6(α, θ)|q|1 ; C6(α, θ) :=

1√
2 sin θ

{
C2

1,α,θ + C2
2,α,θ + 2C1,α,θC2,α,θ cos2 θ

+ (C1,α,θ + C2,α,θ)
√

C2
1,α,θ + C2

2,α,θ + 2C1,α,θC2,α,θ cos 2θ
}1/2

, (51)

whereCi,α,θ = Ci(α, θ) (i = 1, 2), and|q|1 =
√
|q1|21 + |q2|21 .

Remark 3. From (50) and (51), it is easy to derive the following estimate for the Fortin interpolation
operatorΠF

α,θ,h for Tα,θ,h:

‖q−ΠF
α,θ,hq‖≤C6(α, θ)h|q|1+C7(α, θ)h‖div q‖ ; C7(α, θ) :=

√
1+α cos θ+α2

24
, ∀q∈H1(Tα,θ,h)

2. (52)

Because of the factorsin θ in (51), the maximum angle condition applies to estimate (51), and hence to
(52) [1, 5, 17]. On the other hand, the estimates forΠ0

α,θ,h andΠ1,N
α,θ,h are free from such conditions as may

be seen from (43) and the comments there.

GLOBAL INTERPOLATION OPERATORS

So far, we have introduced and analyzed local interpolation operatorsΠ0
α,θ,h, Π1,N

α,θ,h andΠF
α,θ,h. For each

K ∈ T h, we can find an appropriateTα,θ,h congruent toK under a mappingΦK : K → Tα,θ,h. Then
it is natural to define theP1 non-conforming interpolation operatorΠh : H1

0 (Ω) → V h by Πhu|K =
[Π1,N

α,θ,h(v|K ◦ Φ−1
K )] ◦ ΦK for ∀v ∈ H1

0 (Ω) and∀K ∈ T h. Similarly, the orthogonal projection operator
Qh : L2(Ω) → Xh is related toΠ0

α,θ,h, while the global Fortin operatorΠF
h is defined throughΠF

α,θ,h, ΦK

and the Piola transformation for 2D contravariant vector fields [9].
For eachK ∈ T h, define{αK , θK , hK} as{α, θ, h} of the associatedTα,θ,h. Then, our analysis shows
that the estimates in (7) can be concretely given by, for∀v ∈ H1

0 (Ω) ∩H2(Ω) and∀g ∈ H1(Ω) + V h,

‖v − Πhv‖ ≤ Ch
5 h2

∗|v|2 ≤ Ch
0 Ch

{1,2}h
2
∗|v|2 , ‖∇v −∇hΠhv‖ ≤ Ch

4 h∗|v|2 ≤ Ch
0 h∗|v|2 ,

‖∇v − ΠF
h∇v‖ ≤ Ch

6 h∗|v|2 + Ch
7 h∗‖∆v‖ , ‖g −Qhg‖ ≤ Ch

0 h∗‖∇hg‖ , (53)

where

h∗ = max
K∈T h

hK , Ch
J = max

K∈T h
CJ(αK , θK) (J = 0, 4, 5, 6, 7, {1, 2}) . (54)

Remark 4. Relations such as (20), (23) and (25) may suggest the possibility of finding interpolations for
∇u in W h better than that by the Fortin operator, which are free from the maximum angle condition [5].
However,∇h(Πhu + αh), for example, is not shown to belong toW h, because we cannot prove the inter-
element continuity of normal components unlike∇hũh. Our numerical results show that such a condition
is probably essential for the non-conformingP1 triangle. See also [1] for related topics.

NUMERICAL RESULTS

Firstly, we performed numerical computations to see the actual dependence of various constants onα and
θ by adopting the conformingP1 element and a kind of discrete Kirchhoff plate bending element [13], the
latter of which is used to deal with directly the 4-th order partial differential eigenvalue problems related
to C4(α, θ) andC5(α, θ). That is, we obtained some numerical results forC4(α) andC5(α) (θ = π/2)
together with their upper bounds. We used the uniform triangulations of the entire domainTα: Tα is
subdivided into small triangles, all being congruent toTα,π/2,h with e. g.h = 1/20.
The left-hand side of Fig. 2 illustrates the graphs of approximateC4(α) andC0(α) versusα ∈]0, 1], while
the right-hand side does similar graphs forC5(α) andC0(α)C{1,2}(α). In both cases, the theoretical upper
bounds based on (43) give fairly good approximations to the considered constantsC4(α) and C5(α).
Asymptotic behaviors of the constants forα ↓ 0 observed in the figures can be analyzed as in [15].
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Figure 2: Numerical results forC4(α) & C0(α) (left), and forC5(α) & C0(α)C{1,2}(α) (right) ; 0 < α ≤ 1

We also tested numerically the validity of our a priori error estimate for‖∇u − ∇huh‖. That is, we
chooseΩ as the unit square{x = {x1, x2}; 0 < x1, x2 < 1}andf asf(x1, x2) = sin πx1 sin πx2 ,
and consider theN × N Friedrichs-Keller type uniform triangulations(N ∈ N). In such situation,

u(x1, x2) =
1

2π2
sin πx1 sin πx2 , and all the triangles are congruent to a right isosceles triangleT1,π/2,1/N ,

i. e.,h∗ = h = 1/N . Moreover, we can use the following values or upper bounds for necessary constants:

Ch
0 = C0 = 1/π , Ch

{1,2} = C{1,2} / 1/4 , Ch
6 = C1 = C2 / 1/2 , Ch

7 = C7 = 1/
√

12 . (55)

Figure 3 illustrates the comparison of the actual‖∇u − ∇huh‖ and its a priori estimate based on our
analysis. The difference is still large, but anyway our analysis appears to give correct upper bounds and
order of errors. Probably, a posteriori estimation mentioned previously would give more realistic results.

slope= 1
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Figure 3: Numerical results for‖∇u−∇huh‖ and its a priori estimate versush

CONCLUDING REMARKS

We have obtained some theoretical and numerical results for several error constants associated to the
non-conformingP1 triangle, which we hope to be effectively used in quantitative error estimates, which
are necessary for adaptive mesh refinements [7] and numerical verifications. Especially for numerical
verification of partial differential equations by Nakao’s method [19], accurate bounding of various error
constants is essential. Moreover, we are planning to extend our analysis to its 3D counterpart, i. e., the
non-conformingP1 tetrahedron with face DOF’s.
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